CHROM, 21 141

#### Note

# Ion chromatographic determination of cyanide compounds by chloramine-T and conductivity measurement

#### MAKOTO NONOMURA\*

Department of Chemistry, Tokyo Metropolitan Industrial Technology Center, 13-10 Nishigaoka 3-Chome, Kita-ku, Tokyo 115 (Japan)

and

TOSHIYUKI HOBO

Department of Industrial Chemistry, Faculty of Technology, Tokyo Metropolitan University, 1-1 Fukasawa 2-Chome, Setagaya-ku, Tokyo 158 (Japan)

(Received November 8th, 1988)

Ion chromatography (IC) is a powerful technique for the separation and determination of anions and cations<sup>1</sup>. However, cyanide ion cannot be directly detected by the conductivity detector due to its low dissociation constant (pK=9.2). Therefore, other means such as electrochemical detection (ED)<sup>2-6</sup>, or derivatization to a conducting form<sup>7-10</sup>, should be employed. Though ED methods are sensitive and selective for cyanide ion, the detectors are too expensive. Derivatization methods are time consuming and troublesome.

One of us previously reported an IC method for the determination of free cyanide and metal cyanide complexes using a conductivity detector<sup>11</sup>, and applied it to plating solutions and waste-waters<sup>12</sup>. It was based on the oxidation of cyanide ion by sodium hypochlorite to give cyanate ion  $(CNO^{-})^{10,11}$ . Since the dissociation constant of hydrogen cyanate is fairly high (pK=3.66), cyanate ion can be measured by a conventional conductivity detector. However, a rather large chloride ion peak was observed, and the resin in the column was damaged during analysis.

Then, we attempted to replace sodium hypochlorite by a weaker oxidizing agent, chloramine-T, which is generally used in colorimetry<sup>13-15</sup>. The resin in a separator column is less damaged and the chloride ion peak is smaller than with sodium hypochlorite. Since the present method does not need buffer solution, colour developing agent and long standing time, it is much simpler than the usual one<sup>13-15</sup>.

Various parameters such as the amount of chloramine-T, temperature, standing time, and the stability of CNO<sup>-</sup> formed were optimized to provide a quantitative conversion of CN<sup>-</sup> into CNO<sup>-</sup>. The calibration graph for CN<sup>-</sup>, interferences from diverse anions and reducing agents and the applicability to the determination of metal cyanide complexes were also investigated. The method was applied successfully to the determination of cyanide compounds in waters and waste-waters.

#### **EXPERIMENTAL**

Apparatus and reagents

Chromatography was performed on a Dionex system 2010i ion chromatograph equipped with a conductivity detector. A separator column (HPIC-AS4A) with a guard column (HPIC-AG4) and a fibre suppressor (AFS-1) were used. The volume of the sample loop was 50  $\mu$ l. The reagents used, except for chloramine-T solution, were as in ref. 11. Chloramine-T solution (5 or 10% w/v) was prepared daily.

## Procedure

In a 50-ml volumetric flask were placed 5.0 ml of cyanide solution (10 mg/l, 0.01 M sodium hydroxide) and 4.5 ml of 0.1 M sodium hydroxide solution and the volume was made up to 50 ml with deionized water. A 50- $\mu$ l volume of chloramine-T solution was added and mixed thoroughly. The mixture was kept at 80°C for 10 min, then cooled in a water-bath (5 min). An aliquot of the solution was injected into the ion chromatograph.

For real sample analysis, an aliquot of sample solution and 0.1 M sodium hydroxide solution were mixed and diluted to 50 ml in deionized water (pH 12). Then, the procedure mentioned above was followed.

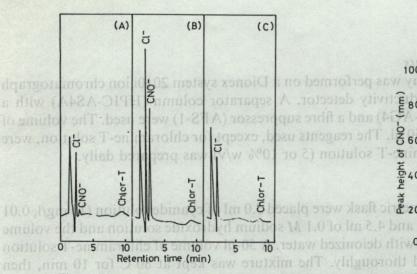
# Stand, Column: HPIC-AS4A: cluent, 2.2 m.M Na, CO, delectionic Colu

Chromatogram of cyanate ion

The overall reactions leading to cyanate ion may be written as follows<sup>13,16,17</sup>.

$$\text{CN}^- + \text{CH}_3\text{C}_6\text{H}_4\text{SO}_2\text{NCINa} + 2\text{H}_2\text{O} \rightarrow \text{CNCI} + \text{CH}_3\text{C}_6\text{H}_4\text{SO}_2\text{NH}_2$$
  
+  $\text{Na}^+ + 2\text{OH}^-$  (1)

ature to a maximum at 
$$70^{\circ}$$
C +  $10^{\circ}$ C (Fig. 4). No differences were


Cyanide ion reacts with chloramine-T to produce cyanogen chloride (CNCl) (reaction 1). When heated at alkaline pH, CNCl is hydrolyzed to CNO<sup>-</sup> (reaction 2). Typical chromatograms of cyanate ion are shown in Fig. 1.

A small peak, corresponding to only 5.4% of CN<sup>-</sup>, appeared when the reaction was performed at room temperature (25°C) for 10 min (A). However, when heating at 80°C is carried out for 10 min (B) the reaction proceeds quantitatively. The chromatogram of a blank is shown in Fig. 1 (C).

As shown in Fig. 1, a positive peak, called the "pseudopeak", appears first. Peaks of chloride and cyanate ions (A,B) follow. Their retention times are ca. 2.3 and 3.0 min, respectively. In this case, the peak of chloride ion was smaller than that produced when sodium hypochlorite was used <sup>11</sup>. The size is dependent on the concentration of cyanide ion (reaction 2).

# times larger than that of cyanide ion the separati noitibnos gnizibixo mumitqO e ion is

The volume of chloramine-T solution for the conversion of CN<sup>-</sup> into CNO<sup>-</sup> was optimized by using 5% chloramine-T solution for 1 mg/l cyanide solution and 10% solution for 10 mg/l cyanide solution. The results are shown in Fig. 2.



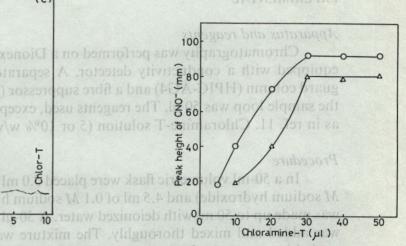



Fig. 1. Chromatogram of cyanate ion: (A) CN<sup>+</sup> (1 mg/l, 50 ml) + chloramine-T (Chlor-T) (5%, 50  $\mu$ l), 25°C, 10 min; (B) CN<sup>-</sup> (1 mg/l, 50 ml) + chloramine-T (5%, 50  $\mu$ l), 80°C, 10 min; (C) water (pH 12, 50 ml) + chloramine-T (5%, 50  $\mu$ l), 80°C, 10 min. Column: HPIC-AS4A. Eluent: 2.2 mM Na<sub>2</sub>CO<sub>3</sub>. Detector: conductivity: full scale, 3  $\mu$ S.

Fig. 2. Effect of the volume of chloramine-T solution added:  $\bigcirc = \text{CN}^-$  (1 mg/l, 50 ml) + chloramine-T (5%,  $10 - 50 \,\mu$ l);  $\triangle = \text{CN}^-$  (10 mg/l, 50 ml) + chloramine-T (10%,  $10 - 50 \,\mu$ l). Conditions: 80°C, 10 min stand; Column: HPIC-AS4A; eluent, 2.2 mM Na<sub>2</sub>CO<sub>3</sub>; detector, conductivity, full scale, 3  $\mu$ S ( $\bigcirc$ ), 30  $\mu$ S ( $\triangle$ ).

In both cases, when  $30 - 50 \mu l$  of the solution were added the peak heights were almost constant. Therefore, the volume of chloramine-T solution was fixed at  $50 \mu l$ .

The effect of temperature on the conversion of CN<sup>-</sup> into CNO<sup>-</sup> was examined. Results are shown in Fig. 3. The peak height of cyanate ion increases with temperature to a maximum at 70°C and was almost constant between 70 and 90°C.

The effect of reaction time was examined at 80°C (Fig. 4). No differences were observed for reaction times of 10 – 30 min. Cyanate ion formed at pH 12 was stable for 45 min. Therefore, 80°C and 10 min were chosen.

## Calibration graphs

Two calibration graphs for cyanide ion concentration ranges of 0.05 - 1.0 and 1.0 - 10.0 mg/l, are shown in Fig. 5. Both plots are essentially linear, which indicates that the oxidation reaction is almost stoichiometric. The correlation coefficients were 0.9996 (for 0.05 - 1.0 mg/l) and 0.9992 (for 1.0 - 10.0 mg/l).

#### Interferences

The effects of diverse anions and reducing agents on the cyanide analysis were examined. The results are presented in Table I.

Common anions do not interfere. When the concentration of chloride ion is 50 times larger than that of cyanide ion the separation of cyanate ion from chloride ion is incomplete, which gives a negative error. The retention time of nitrite ion (2.7 min) almost coincides with that of cyanate ion (3.0 min), which gives a positive error. The latter can be avoided by decomposing nitrite ion with amidosulphuric acid<sup>11</sup>.

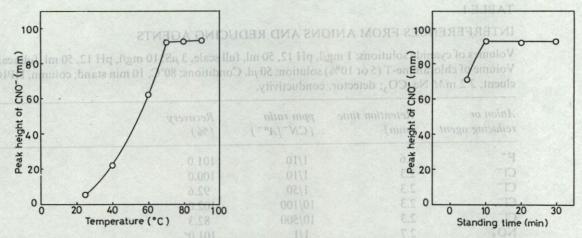



Fig. 3. Effect of temperature (25 – 90°C). Conditions:  $CN^-$  (1 mg/l, 50 ml) + chloramine-T (5%, 50  $\mu$ l), 10 min; Column: HPIC-AS4A. Eluent: 2.2 mM Na<sub>2</sub>CO<sub>3</sub>. Detector: conductivity: full scale, 3  $\mu$ S.

Fig. 4. Effects of reaction time (5-30 min). Conditions: CN<sup>-</sup> (1 mg/l, 50 ml) + chloramine-T (5%,  $50 \mu l$ ),  $80^{\circ}$ C; Column: HPIC-AS4A. Eluent:  $2.2 \text{ m} M \text{ Na}_{2}\text{CO}_{3}$ . Detector: conductivity: full scale,  $3 \mu S$ .

Large amounts (10 mg/l) of reducing agents such as sulphide, thiosulphate and ascorbic acid cause serious interferences. However, at less than 1 mg/l, interference only from sulphide ion is considerable. Sulphite, hypophosphite, phosphite and arsenite ions cause no interference, even when the amount is 10 times larger than that of cyanide ion.

Thiocyanate ion gives cyanate ion upon reaction with chloramine-T<sup>17</sup> and heating. Therefore, even a small amount of this ion causes serious interference.

## Analysis of metal cyanide complexes

In order to study the applicability to metal cyanides, solutions of zinc, cad-

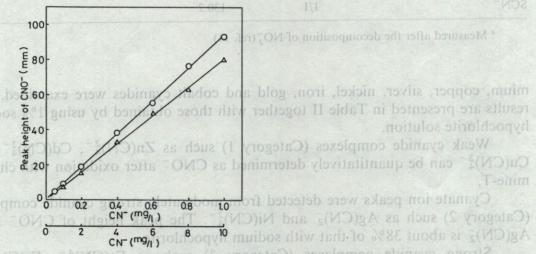



Fig. 5. Calibration graphs:  $\bigcirc = CN^-$  (0.05 – 1 mg/l, 50 ml) + chloramine-T (5%, 50  $\mu$ l);  $\triangle = CN^-$  (1 – 10 mg/l, 50 ml) + chloramine-T (10%, 50  $\mu$ l). Conditions: 80°C, 10 min stand; Column: HPIC-AS4A. Eluent: 2.2 mM Na<sub>2</sub>CO<sub>3</sub>; detector, conductivity, full scale, 3  $\mu$ S ( $\bigcirc$ ), 30  $\mu$ S ( $\triangle$ ).

TABLE I

# INTERFERENCES FROM ANIONS AND REDUCING AGENTS

Volumes of cyanide solutions: 1 mg/l, pH 12, 50 ml, full scale, 3  $\mu$ S; 10 mg/l, pH 12, 50 ml, full scale, 30  $\mu$ S. Volume of chloramine-T (5 or 10%) solution: 50  $\mu$ l. Conditions: 80°C, 10 min stand; column, HPIC-AS4A; eluent, 2.2 mM Na<sub>2</sub>CO<sub>3</sub>; detector, conductivity.

| Anion or reducing agent      | Retention time (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ppm ratio<br>(CN <sup>-</sup> /A" <sup>-</sup> ) | Recovery (%)                 | 0 A 10 TO 10 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F-                           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/10                                             | 101.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CI-                          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/10                                             | 100.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CI-                          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/50                                             | 92.6                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CI-                          | 0 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/100                                           | 100.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CI-                          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/500                                           | Temperature (°C) 82.8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO,                          | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/1                                              | 101.0a                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Condition 01/1                                   | of temperature (250,80°).    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO - ON MIN                  | ector: conduct.2ty:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/10 MM                                         | 101.00 E 0.1012              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HPO <sub>4</sub>             | 7.6 02 Nom 15 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1). Conditi 01/1 Ch                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DI S OF S                    | stector: condust. 8 ity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/10 Mm                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $NO_3^-$                     | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/10                                             | 101.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $SO_4^{2-}$<br>$S^{2-}$      | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/10                                             | 100.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/1                                              | 64.5                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S2-                          | dalua an daua ate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/10                                             | c amounts (10 10.0) o        | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SO <sub>3</sub> <sup>2</sup> | nts such as sulph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/1                                              | 101.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SO <sub>3</sub>              | 1617.7 201 1B , 19V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/10                                             | 97.8                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S2O3-02019                   | hypophosphite,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rable. Sulphite                                  | sulphide ion is 0.001de      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | ause no interfer8.01, e      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PO3-                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/1                                              |                              | cyanide io                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PO3 -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/10                                             | 102.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $PO_3^{\overline{3}}$        | figure notice of the state of t | 1/1                                              |                              | JIH B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PO3-OTH SHO                  | s ion cause 8.2cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/10 Inuoms                                      | 101.0 nerefore, even a 0.101 | heating. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $C_6H_8O_6$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/1                                              | 101.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_6H_8O_6$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | metal cyanide (2.88)         | Analysis o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | etal cyanides, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AsO <sub>2</sub>             | etat cyamides, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/10                                             | 100.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCN-                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0/1                                              | 34.3                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCN-                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/1                                              | 130.2                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>&</sup>quot; Measured after the decomposition of NO<sub>2</sub> (ref. 11).

mium, copper, silver, nickel, iron, gold and cobalt cyanides were examined. The results are presented in Table II together with those obtained by using 1% sodium hypochlorite solution.

Weak cyanide complexes (Category 1) such as  $Zn(CN)_4^{2-}$ ,  $Cd(CN)_4^{2-}$  and  $Cu(CN)_4^{3-}$  can be quantitatively determined as  $CNO^-$  after oxidation with chloramine-T.

Cyanate ion peaks were detected from moderately strong cyanide complexes (Category 2) such as  $Ag(CN)_2^-$  and  $Ni(CN)_4^{2-}$ . The peak height of  $CNO^-$  from  $Ag(CN)_2^-$  is about 38% of that with sodium hypochlorite.

Strong cyanide complexes (Category 3) such as  $Fe(CN)_6^{4-}$ ,  $Fe(CN)_6^{3-}$ ,  $Au(CN)_2^{-}$ ,  $Au(CN)_4^{-}$  and  $Co(CN)_6^{3-}$  are stable. Therefore, almost no  $CNO^{-}$  peaks were detected even after heating at  $80^{\circ}$ C, except for  $Au(CN)_4^{-}$ . The reason why the

#### TABLE II

## OXIDATION YIELDS OF METAL CYANIDE COMPLEXES WITH CHLORAMINE-T AND SO-DIUM HYPOCHLORITE

Volumes: cyanide ion (ca. 1 mg/l, pH 12) 50 ml; chloramine-T (5%) solution 50  $\mu$ l; NaClO (1%) solution 50  $\mu$ l. Standing time: 80°C, 10 min. Column: HPIC-AS4A, AFS. Eluent: 2.2 mM Na<sub>2</sub>CO<sub>3</sub>. Detector: conductivity: full scale; 3  $\mu$ S.

| $Zn(CN)_4^{2-}$                   | 16.7               | 88.0                      | 86.5°                                |
|-----------------------------------|--------------------|---------------------------|--------------------------------------|
| Cd(CN)4                           | 18.8               | milion C.0.89 HPIC-A      | * Five samples at (0.69 concent      |
| $Cu(CN)_4^{3-}$                   | 30.3               | °C, 10 m 0.19 ind.        | inductivity, Chloramin 0.4950 al; 80 |
| $Ag(CN)_{2}^{-}$                  | 21.2               | 36.0                      | Spiked with L0 n0.20 vanide          |
| $Ni(CN)_4^{2-}$                   | 31.3               | alkaline 0.601 mation     | Before treatment 0.001anide b        |
| Fe(CN)4-                          | hard 35 w notifill | alkaline o.brinaton: dist | After treatment c0.81anide by        |
| Fe(CN) <sub>6</sub> <sup>3-</sup> | 42                 | 0.0                       | 0.0                                  |
| Au(CN)                            | 38.3               | 0.0                       | 0.0                                  |
| Au(CN)                            | _                  | 21.0                      | 20.0                                 |

<sup>&</sup>quot; Peak height of CNO formed (mm). Devincies at some 25 belief saw (3)

CNO<sup>-</sup> peak was detected from Au(CN)<sub>4</sub><sup>-</sup> is considered to be that a part of Au (CN)<sub>4</sub><sup>-</sup> was decomposed to Au(CN)<sub>2</sub><sup>-</sup> and CN<sup>-</sup>. Therefore, it was oxidized to CNO<sup>-</sup> by chloramine-T at 80°C.

## Real sample analysis

The proposed method was applied to the determination of cyanide ion in drinking water, river-water and plating waste-waters. As no detectable amount of cyanide

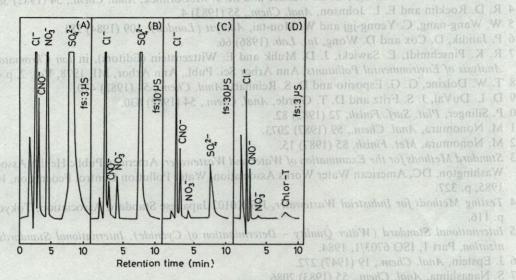



Fig. 6. Determination of cyanide in real samples: (A) = Drinking water spiked with 1.0 mg/l cyanide ion; (B) = River-water spiked with 1.0 mg/l cyanide ion; (C) = Plating waste-water before treatment; (D) = Plating waste-water after treatment, distillation was performed. Conditions: 80°C, 10 min stand; column: HPIC-AS4A; eluent: 2.2 mM Na<sub>2</sub>CO<sub>3</sub>; detector: conductivity. fs = Full scale.

#### TABLE III

# OS CIAM DETERMINATION OF CYANIDE IN REAL SAMPLES

|                         | 2.3<br>7.0<br>0.9 | 220.0<br>\$2.1<br>\$00.0 | 0.E71<br>94.0   | Plating waste-water                                  |
|-------------------------|-------------------|--------------------------|-----------------|------------------------------------------------------|
| tivity: full scale; 3 / | 8.0               | 800.0                    | 86.0<br>26.0    | Drinking water <sup>b</sup> River-water <sup>b</sup> |
| Volumes: cyanide ic     | (%) 'A')          | J.G.S.                   | CN_ (mg/l) mean | Sample Did Month                                     |

conductivity. Chloramine-T, 50 µl; 80°C, 10 min stand. Five samples at each concentration. Column: HPIC-AS4A. Eluent: 2.2 mM Na2CO3. Detector:

<sup>b</sup> Spiked with 1.0 mg/l cyanide ion.

Before treatment of cyanide by alkaline chlorination.

4 After treatment of cyanide by alkaline chlorinaton; distillation was performed (total cyanide).

ented in Table III and Fig. 6. distillate was directly measured for its cyanide concentration. The results are pres-(C) was diluted 25 times in deionized water. Waste-water (D) was distilled and this water (A) and river-water (B), and the recoveries were checked. Plating waste-water ion was found, a small amount of cyanide ion (50 µg) was added to 50 ml of drinking

(1.0), C (173) and D (0.96 mg/l, CN<sup>-</sup>) were 0.8, 2.3, 0.7 and 0.9%, respectively. were 98 and 95%, respectively. The coefficients of variation (%) of samples A (1.0), B The recoveries of cyanide ion from the spiked drinking water and river-water

#### **KEFERENCES**

2 J. E. Girard, Anal. Chem., 51 (1979) 836. I H. Small, T. Sevens and W. C. Bauman, Anal. Chem., 47 (1975) 1801. TOVIT, TOTEW BIT

4 R. D. Rocklin and E. L. Johnson, Anal. Chem., 55 (1983) 4. 3 A. M. Bond, I. D. Heritage, G. G. Wallace and M. J. McCormick, Anal. Chem., 54 (1982) 582.

S W. Wang-nang, C. Yeong-jgj and W. Mou-tai, Analyst (London), 109 (1984) 281.

6 P. Jandik, D. Cox and D. Wong, Int. Lab. (1986) 66.

Analysis of Environmental Pollutants, Ann Arbor Sci. Publ., Ann Arbor, MI, 1978, Vol. 2, p.41. 7 R. K. Pinschmidt, E. Sawicki, J. D. Mulik and E. Wittzenstein (Editors), in Ion Chromatographic

8 T. W. Dolzine, G. G. Esposito and D. S. Reinhart, Anal. Chem., 54 (1982) 470.

10 P. Silinger, Plat. Surf. Finish, 72 (1985) 82. 9 D. L. DuVal, J. S. Frilz and D. T. Gjerde, Anal. Chem., 54 (1982) 830.

11 M. Nonomura, Anal. Chem., 59 (1987) 2073.

12 M. Nonomura, Met. Finish, 85 (1987) 15.

1985, p. 327. Washington, DC, American Water Works Association, Water Pollution Control Federation, 16th ed., 13 Standard Methods for the Examination of Water and Wastewater, American Public Health Association,

14 Testing Methods for Industrial Wastewater, JIS K0102 Japanese Standard Association, Tokyo, 1986,

nization, Part 1, ISO 6703/1, 1984. 15 International Standard (Water Quality - Determination of Cyanide), International Standards Orga-

16 J. Epstein, Anal. Chem., 19 (1947) 272.

17 S. Nagashima, Anal. Chem., 55 (1983) 2086.