POSSIBLE REACTION MECHANISMS OF HYDROGEN CYANIDE FORMATION FROM OXIME BLOCKED ISOCYANATES AND RELATED ORGANIC COMPOUNDS DURING TOTAL CYANIDE ANALYSIS

H. MODLER*

*Daicel-Hüls LTD, Mori-Bldg., 19–5 Toranomon 1-Chome, Minato-Ku, Tokyo 105

and

M. NONOMURA+

*Dep. of Chemistry, Tokyo Metr. Ind. Techn. Center, 13–10 Nishigaoka 3-Chome, Kita-Ku, Tokyo 115

(Received 14 July 1994)

Frequent reports by paint manufactures of hydrogen cyanide detection in waste contaminated with oxime blocked isocyanates lead to an investigation of possible hydrogen cyanide generating reaction pathways. GC-MS is empolyed to analyze traces of byproducts of the total cyanide analysis. A Beckmann Rearrangement of oxime blocked isocyanates has been detected. The formation of α -ketocyanides and their hydrolysis to free hydrogen cyanide is reported as the key compound that leads to hydrogen cyanide generation. Hydrogen cyanide yields from the reaction of NO_x or hydroxylamine with ketones, alcohols, amines, peptides, EDTA, ascorbic acid and cyanides. The presence of an organic phase improves hydrogen cyanide yields. A sample pretreatment for oxime blocked isocyanate samples is described.

KEY WORDS: Total cyanide analysis; hydrogen cyanide generation; blocked isocyanates; oximes; ketones; α-ketocyanides

INTRODUCTION

The total cyanide analysis method is based on the distillation of hydrogen cyanide from an acidic condenser solution into an alkaline receiver solution. The method has been introduced several decades ago to analyze waste water from metallurgic plants (hardening of steel by cyanides). Since then the analysis of waste water became a general environmental issue, which lead to the analysis of more samples with a larger content of organic substances. In this process an increasing number of hydrogen cyanide false detections has been reported. Recently it has been described that this

observation seems to be connected to the presence of hydroxylamine or nitrite ions in the analytical mixture^{1,2}.

Oxime blocked isocyanates generate free hydroxylamine via hydrolysis in water. They are widely used to cure resins and are favorably applied in water based coatings. During the application of these coatings waste water is generated. In this waste water hydrogen cyanide has been detected by using the total cyanide analytical method.

We will discuss possible reaction mechanisms of ketones, amines and blocked isocyanates with hydroxylamine or nitrite in the total cyanide analytical method that can lead to hydrogen cyanide formation as well as we will give some ideas how to avoid this misdetection in case of analyzing oxime blocked isocyanates.

EXPERIMENTAL METHODS

Apparatus

For the determination of hydrogen cyanide, we used the same distillation equipment and reagents as they are required by the Japanese Industrial Standard (JIS -K0102–38.1). It has been shown that the employment of other methods, like the one of the International Standard Organization or the Standard Methods of the USA lead in principle to the same results².

To support suggested reaction mechanisms, we employed packed column gas chromatography with a flame ionization detector as well as capillary gas chromatography coupled with a mass spectrometer (GC-MS). With the GC-MS method the substances have been identified by comparing the collected MS-data with a mass spectral data base.

Reagents

A list of all reagents used or cited and their abbreviations is given in Table 1. Of all investigated samples only IPDI-MEKO has been synthesized at the Daicel-Hüls Laboratory. All other sample were supplied by Aldrich or Wako Pure Chemicals.

To prepare IPDI-MEKO, 2.01 mol of MEKO per 1 mol IPDI are used. While the IPDI is stirred well, MEKO is added in a way that the temperature does not exceed 80°C. After all MEKO has been added, the mixture is kept at 70°C for 2 more hours and than cooled.

PROCEDURE

To determine the amount of generated hydrogen cyanide we⁶ used an apparatus according to the JIS standard. Into this apparatus 1g of the sample was added to 240 ml water and 10 ml concentrated H₃PO₄, which provides a highly acidic solution (pH 2). Any other chemicals added are listed in the Tables 2 to 6. In most cases the organic samples were not soluble in water. To handle some of the samples more easily, they

Table 1 List of all reagents used or cited and their abbreviations

Abbreviation	Reagent
AN	Acetonitrile
Ascorb-Ac	Ascorbic acid
BA	n-Butyl alcohole
BMG	Butyl monoglycolether
СуН	Cyclohexanone
СуНО	Cyclohexanon oxime
DIBA	Diisobutyl amine
DIPK	Diisopropyl ketone - 2, 4-Dimethyl-3-Petanone
DMK	Dimethyl ketone (Acetone)
DMKO	Dimethyl ketoxime (Acetonoxime)
DTBK	Ditertierbutyl ketone - 2, 2, 4, 4-Tetramethyl-3-Petanone
EDTA	Ethylene diamine tetra acetic acid
FAO	Formaldehyd oxime
Gly	Glycine
HDA	Hexamethylendiamine
HDI	Hexamethylendiisocyanate
IPA	Isopropyl alcohol
IPDA	Isophorondiamine
IPDI	Isophoronediisocyanate
MEK	Methylethyl ketone
MEKO	Methylethyl ketoxime
MeOH	Methanol
PCy	Pyruvocyanide - Acetyl cyanide
TDI	Toluoldiisocyanate

have been dissolved in methanol before they were added to the flask. Despite the methanol content, most samples still phase separated and established an organic phase.

The distillation is carried out at temperatures a little above 100° C. 80 ml distillate is distilled into an alkaline receiver, with a pH of at least 12 by using 20 ml of 0.5N NaOH. The cyanide ion in the distillate was determined by the 4-pyridine carboxylic acid-pyrazolone method³. The detection limit set by the JIS standard is 5 μ g CN⁻/100 ml distillate in the receiver.

RESULTS AND DISCUSSION

Oxime Blocked Isocyanates and the Formation of Hydrogen Cyanide

The data presented in Table 2 clearly indicates that only oxime blocked isocyanates generate hydrogen cyanide. Alcohol secondary or amine blocked or free isocyanates do not generate hydrogen cyanide.

To get an insight into the complex chemistry that takes place, we investigated the alkaline JIS-Method distillate by GC-MS (Figure 1). It had to be distilled again, to remove inorganic components, such as NaOH. One could also think of collecting the distillate in a neutral and cooled receiver, but this would not cover any side reaction that might take place in the alkaline receiver.

Table 2 CN- Detection test results for blocked or partially blocked isocyanates

Sample	Refer- ence	Amount (g)	NH ₂ OH ·HCl (g)	NaNO ₂ (g)	EDTA (g)	Reducing or Additional Agent	CN- (µg/100 ml) (distillate)	Yield per mol Sample
IPDI	6	1.0	-	-	a cidios	_	< 5	
	2	1.0	-	-	_	-	0.9	
	6	1.0	-	-	1.0	-	< 5	
		1.0	-	_	1.0	1 gNH ₄ SO ₃ NH ₂	. <5	
	6 2 2 2 2 2 5	1.0	0.1	DURNT HOL			1.4	
	2	1.0	1.0	_	_	-	1.9	
	2	1.0	2 4 Dimen	0.1	-	-	< 0.5	
	2	1.0	-	1.0	1 4	-	0.8	
	5	0.6	0.5	100-00		$0.3gH_2N-NH_2$	<1	
IPDI+ MEKO	5	1.0	11-11	smal=life	un - ne	-	5 – 20	
IPDI+ MEKO+	5	1.0 1.0	-	om To h	10.17	-	50 – 100	
MeOH IPDI-MeOH+	5	5.0 1.5		niois (past	refrages a	H _	< 1.0	
MEKO+ MeOH		1,0 4.5						
IPDI-DMKO	2	$1.0^{1)}$	_	_	and Total	_	124	$1.69^{\circ}/_{\circ\circ}$
IPDI-MEKO	6	$1.0^{1)}$	_	may _ all	-	_	25	0.18%
	6	$1.0^{1)}$	-	2014	-	M2 -	53	0.390%
	6	1.01)	0.5	man - ald	-	M -	27	$0.20^{\circ}/_{\circ}$
	6	$1.0^{1)}$	-	0.5	-	-	700	$5.12^{\circ}/_{\circ}$
	2	$1.0^{1)}$	STREET, ST	-	-		294	2.15%
	6	1.01)	_	-	1.0	-	62	
	6	1.01)	_	_	1.0	1 g NH ₄ SO ₃ NH ₂	140	
	6	1.01)	_	_	1.0	3 g NH ₄ SO ₃ NH ₂	67	
IPDI-CyHO		1.01)	_	-	-		129	2.14%/00
IPDI-BA	2 2	1.01)	NEON THEN	100	30120	romanista una	1.1	
IPDI-DIBA	2	1.01)	bro-bet	151-25	-	off salarites at	0.6	
HDI	2	1.0	-1-1-	-	-		< 0.5	
	2	1.0	0.1	_	_	_	1.9	
	2	1.0	1.0	M 140_0 1	_	Rappie Teacher	2.2	
	2 2 2	1.0		0.1	512	ab odi-n nor	2.9	
		1.0		1.0	_	10. 11- 11-11	4.8	
HDI-MEKO	2 2	1.01)	and the	_	_	TORREST TORREST	301	3.81%/00
TDI	2	1.0	_	_	_	12V1909	< 0.5	700
TDI-MEKO	2 2	1.01)	_	-	_	_	78.3	1.01%

¹⁾ The sample was dissolved in 5 ml methanol before it was put into the flask.

The identified samples in Figure 1 are NH₃, CO₂, MEK, AN, water and MEKO. Since we detected MEK and MEKO, one has to assume that IPDI-MEKO hydrolyses and /or deblocks under the experimental conditions. These reactions release MEKO or MEK. Due to the acidic reaction conditions about 90% of the free MEK-oxime will hydrolyse⁷, so that NH₂OH and MEK result as final reaction products. These two substances could distill separately into the alkaline receiver, where they react again to MEKO. MEKO can also directly distill over. The deblocked and therefore free NCO-

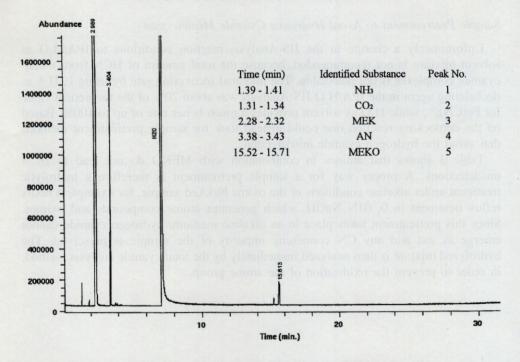


Figure 1 GC-MS 1-Distillate out of 100 ml - NaOH receiver in JIS K0102-38.1

Instrument : Hewlett Packard 5989A

Column : J&B-DB-WAX (0.25 mmø *30 m; 25 μm PEG-20M coating)

Inj. Temp. : 250°C

Column Temp. : $50^{\circ}\text{C} - > 200^{\circ}\text{C}$; 5°C/min ; 5 min init. time

Ion Source Temp. : 200°C Separator Temp. : 100°C Carrier Gas : He; 1 ml/min

group will hydrolyse under the experimental conditions by cleaving of CO_2 and releasing the free Amine – IPDA. These reactions explain the presence of CO_2 , MEK and MEKO in Figure 1. The origin of NH_3 and AN is due to side reactions.

Deblocking Reaction of Oxime Blocked Isocyanates

For IPDI-MEKO it is uncertain whether the sample hydrolyses or deblocks at the JIS-Analysis reaction conditions. Since the deblocking reaction is temperature sensitive, an experimental setup with a changed boiling temperature should help to address this question. By using BMG/H₂O (1/1) instead of H₂O in the JIS-Analysis we detected a boiling temperature range between 120–150°C and an increased amount of generated hydrogen cyanide, while the usage of IPA/H₂O (7/3) lead to a boiling temperature range between 70–82°C and no detected hydrogen cyanide. We therefore believe that IPDI-MEKO deblocks before its constituents hydrolyse.

Sample Pretreatment to Avoid Hydrogen Cyanide Misdetection

Unfortunately a change in the JIS-Analysis reaction conditions to IPA/H₂O as solvent mixture is not recommended, because the total amount of HCM from metal-cyanide complexes is not detectable. The maximal recovering rate by using EDTA as dechelating agent in the IPA/H₂O JIS-Analysis was about 20% of the theoretical value for Fe(CN)₆²⁻, while H₂O as solvent provides a much better rate of up to 100%. Based on the deblocking reaction one could instead look for sample pretreatment methods that avoid the hydrogen cyanide misdetection.

Table 3 shows that amines in combination with MEKO do not lead to HCN misdetections. A proper way for a sample pretreatment is therefore a hydrolytic treatment under alkaline conditions of the oxime blocked sample, for example 6 hours reflux treatment in 0, 01N NaOH, which generates amine compounds and oximes. Since this pretreatment takes place in an alkaline medium, hydrogen cyanide cannot emerge as gas and any CN⁻ containing impurity of the sample is preserved. The hydrolyzed mixture is then analyzed immediately by the total cyanide analysis method, in order to prevent the oxidization of the amine group.

Table 3 CN- generation originated by amine compounds

(distillate) \$\cap\$ \$\cap\$	m98A		- one with	(8)	0.1	9	IPDA
L.6	A STREET	-	2.0	-	0.1	9	
2.0 >	-	-	-	1.0	I	7	
2.0 >	-	-	-	I	I	7	
7.8	_	-		_		7	
	as marked the			COMORNA		7	
	_ 100	_	I	_		7	· vuai
c>	entrus - in sec	-	-	-	'.O.I	c	WEKO IbDV+
50-			See In the	10	01	6	HDA
						2	v.av.
			0.1	0.1		2	
		-				2	
	era elektrik	-				7	
		-		-			$(H^{3}N-CH^{3})^{3}-CO$
	-	-	-	2.0	0.1		Diaminoacetone
	one of our	-	- In-	-	0.1	9	Gly
	strip or comm	35 1700	TE 150	2.0	0.1	9	
	BARCO HOUSE	17 400	2.0	10-1	0.1	9	
۶>	-	-	-	-	0.1	9	Gly-Me-Est.
5>		-	-	2.0			
	\$ > C C C C C C C C C C	\$ >	\$\sigma \cdot \cdo	\$\sigma \cdot \cdo	\$\sigma \cdot \cdo	\$\sigma 0.1\$ \$\frac{1}{5} \sigma 0.1\$ \$1	\$\chis\$ 0.1 9 \$\chis\$ 0.1 7 \$\chis\$

The sample was dissolved in 5 ml methanol before it was put into the flask

Redox - Reaction of NH2OH - Generation of NOx During the JIS-Analysis

The presence of NH₃ in Figure 1 is due to the instability of NH₂OH, which disproportionates into NH₃ and N₂O under acidic conditions⁸ (see Figure 2).

The complete redox degradation of NH₂OH under acidic conditions leads mostly to NH₃ and N₂O (A), with HNO as possible intermediate product. Under alkaline conditions NH₃OH disproportionates to NH₃ and N₂.

The total reaction equation under acidic conditions utilizes 4 molecules of NH₂OH, which have to share a small reaction compartment inside the aqueous solution. It is improbable that this happens. Therefore an intermediate step can be favored, where two NH₂OH molecules react to NH₃ and HNO^{12,13}. HNO can be regarded as a nitrogen analog compound to formaldehyde. It is quite reactive and instable. In water it forms a hydrate, which is mostly protonated at pH 2 (B). In alkaline solutions HN(OH)₂ reacts with NH₂OH to N₂, while the protonation of NH₂OH suppresses this reaction and leads the formation N₂O (C), probably via HO-N = N-OH. The dehydration of HO-N = N-OH is irreversible and at 100° C / pH 2 assumed to be fast. It is also reported that traces of HNO₂ emerge due to the disproportionation of two molecules HN(OH)₂ (D).

NH₃ can act only as a reducing agent, but it's EMF is so high that it can be regarded as inert under the JIS-Analysis reaction conditions. An investigation of N₂O as reactive species in the JIS-Analysis concluded also in an inert behavior of this gas⁹. Therefore NH₂OH; the instable HNO and traces of HNO₂ are favorable nitrogen sources for the generation of hydrogen cyanide from oxime blocked isocyanates.

A calculation based on the IPDI-MEKO / NaNO₂ and IPDI-MEKO HCN yields in Table helps to estimate the amount of generated $\rm HNO_2$. If $\rm HNO_2$ is the main reagent for the HCN generation, about 10% of all free NH₂OH in this example has to be converted into $\rm HNO_2$ and to react before it is reduced by NH₂OH to HO-N = N-OH. A 10% conversion rate seems to be quite big for a side reaction that ought to yield only traces.

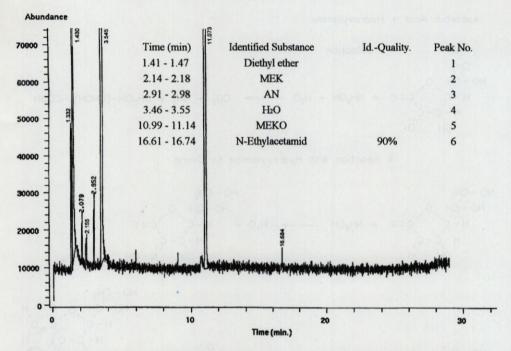
For NH₂OH one can say that the direct reaction of NH₂OH₂⁺ with a target molecule is not neglectable, but it tends to yield small amounts of HCN, even if the reaction of

Figure 2 Redox reactions of hydroxylamine

NH₂OH₂⁺ with a target molecule takes place (Table 3 – Diaminoacetone oxidation by NH₂OH compared with IPDI-MEKO in Table 2). Therefore the main reaction pathway to HCN should follow the HNO route.

AN Generation via Beckmann Rearrangement

Up to now we explained the presence of NH₃, CO₂, MEK and MEKO in Figure 1, but the presence of AN has not been explained yet. It is likely that AN derives from a Beckmann Rearrangement of oxime blocked isocyanates¹⁰ (see Figure 3).


This reaction of oximes is well known in combination with p-toluolsulfonic acid. The GC-MS data indicates that isocyanates can act as elimination group as well with a final product mixture of nitriles, amides, urethanes, amines and alcohols. Figure 4 supports this reaction mechanism by the detection of N-Ethylacetamide. Ethanol has also been detected in the diluted diethyl ether extract of the experiment described in Figure 4, but it can be also an impurity of the extraction agent diethyl ether.

The amine-isocyanate reaction builds up an insoluble precipitate crosslinked via urea bridges, which forms the white sludge in the flask after the JIS-Analysis of oxime blocked isocyanate compounds has been finished. This very quick amine-isocyanate reaction might not take place in the ion pair arrangement during the Beckmann Rearrangement. Therefore urethanes with a relatively low vapor pressure (detectable by capillary GC) are formed.

It is possible to detect small amounts of isophorone based derivatives in an alkaline diethyl ether extract of the flask content after the JIS-Analysis of IPDI-MEKO, which are probably the assumed urethanes. This is unusual, since normally isocyanates react much quicker with amines than with water or alcohols.

Urethanes (Table 2 – IPDI-MeOH), Amines (Table 3 – IPDA), AN and N-Ethylacetamide (Table 6) do not generate significant amounts of HCN in the JIS-Analysis in the presence of NH_2OH . This can be different in mixtures with other

Figure 3 Beckmann rearrangement of oximes

Figure 4 Organic phase GC-MS of alkaline (pH 11) 100 ml aqueous phase / 50 ml diethyl ether extract; 10 fold concentrated by evaporation of diethyl ether to a final sample size of 5 ml; out of 5g IPDI-MEKO; 2.5g NH₂OH'HCl; 10 ml H₂PO₄; 240 ml H₂O; 4h reflux treatment.

Instrument : Hewlett Packard 5989A

Column : J&B-DB-WAX (0.25 mmø *30 m; 25 µm PEG-20M coating)

Inj. Temp. : 250°C

Column Temp. : $50^{\circ}\text{C} - > 200^{\circ}\text{C}$; 5°C/min ; 0 min init. time

Ion Source Temp. : 200°C Separator Temp. : 100°C Carrier Gas : He; 1 ml/min

compounds, but at first it is better to work with a simplified system to establish a reaction mechanism. Also this simplified system has to yield detectable amounts of byproducts caused by this reaction mechanism. Therefore oximes were investigated.

Oximes and the Generation HCN

All investigated ketoximes and aldoximes are water soluble. As Table 4 shows, FAO generates a high amount of HCN under all listed reaction conditions. We believe that this is due to a dehydration reaction of HO-N = CH2 to HCN by elimination of water at elevated temperatures and acidic conditions.

The other oximes generate relatively high amounts of HCN in combination with Ascorbic Acid, which has been utilized as reducing agent in the JIS-CN Analysis. Today NH₄-SO₃NH₂ is used to decompose NO₂⁻. The reaction of NH₂OH with Ascorbic Acid occurs in the way described in Figure 5.

Ascorbic Acid + Hydroxylamine

II. Reaction with Hydroxylamine to Oxime

$$HO - CH_2$$
 $HO - CH_2$
 $HO - CH_2$

$$HO - CH_2$$

 $HO - CH_2$
 HO

Figure 5 HCN generation by reaction of ascorbic acid with hydroxylamine

As instable intermediate product occurs a cyanhydrine, which hydrolyses under acidic conditions to HCN and an aldehyde.

Based on Table 4 it follows for the generation of HCN from EDTA that it is puzzling that EDTA does not generate HCN despite the relative large NH₂OH content (about 0, 32 g NH₂OH) in the experiments of Table 4. In Table 6 about 0, 25 g NH₂OH lead to the generation of a significant amount of HCN. One difference between these two experiments is the additional Cl⁻ content in Table 6, which might catalyze the EDTA degradation. This assumption is not confirmed by the MEKO/EDTA/NaCl experiment in Table 4. Another difference is the presence of MEK in the MEKO/EDTA/NaCl experiment, which therefore hinders the reaction of NH₂OH or its derivates with EDTA in the solution or on the flask surface.

Furthermore Table 4 shows that the HCN generation from IPDI-MEKO does not singly derive from MEKO or any other oxime in the absence of an organic phase. In the presence of an organic phase a generation of HCN out of oximes is possible, if the oxime is dissolved in the water phase (Table 4 – Placel 320 and octacosane

Table 4 CN-formation caused by oxime compounds

Sample	Refer- ence	Amount (g)	NH ₂ OH ·HCl (g)	NaNO ₂ (g)	EDTA (g)	Reducing or Additional Agent	CN- (µg/100 ml) (distillate)	Yield per mol Sample
NH ₂ OH . HCl w% NH ₂ OH:51	ron - g (els-c.C	ZH-and	ents-reg	nin-n	is JOPATTO no	illimp=1.8mi	or etes
FAO [*]	4	0.5		_	reds Trace		470	1.570/00
	4	0.5	AlmTuop	AND IN	1.0	MARCONED 14(II)	517	00
	4	0.5	col-lo	por white	grice of	1 g NH ₄ SO ₃ NH ₂	584	
	4	0.5	-	-	-	1 g Acorb-Ac	1060	
DMKO	4	1.0	-	-	-	AN THE PROPERTY	< 0.5	
w% NH ₂ OH:45	2	1.01)	THE TANK	OLO TIL	noi Jish	O Sulv Zwodz	0.9	
Tbp.:135 °C	4	1.0	min- of	or -un	1.0	nead -n Front	0.6	
	4	1.0	-	-	-	1 g NH ₄ SO ₃ NH ₂	< 0.5	
	4	1.0	The Property	-	The state of	1 g Acorb-Ac	363	
MEKO	4	1.0	-	-	-	-	< 0.5	
w% NH,OH:38	2	1.01)	-	_	_	_	0.6	
Tbp.: 152 °C	6	0.5	_	0.5	_	_	260	
	4	1.0	_	_	1.0	_	1.2	
	6	1.0	- 31	_	1.0	_	< 5	
	6	1.0	_	_	_	0.62 g NaC1	< 5	
	4	1.0	-	-10	od =	1 g NH ₄ SO ₃ NH ₂	< 0.5	
	4	1.0	-	-	-	1 g Acorb-Ac	401	
	6	- nemake	A - KTG	A 400	-110	4 g Placcel 320	< 5	
	6	0.5^{2}	- 0	-	-	4 g Placcel 320	< 5	
	6	$0.5^{2)}$	0.5	_	-	4 g Placcel 320	< 5	
	6	$0.5^{2)}$	_	0.5	_	4 g Placcel 320	62	0.400/00
	6	0.5^{3}	-	_	-	4 g Placcel 320	36	0.23%
	6	0.5	- 0	_	-	4 g Octacosane	9.1	0.060/00
	6	1.0	-	-	-	4 g Octacosane	9.7	0.030/00
	6	0.5	0.5	-	-	4 g Octacosane	8.2	0.050/00
СуНО	4	1.0	-	480	_	-11	< 0.5	- 00
w% NH ₂ OH:29	2	1.01)	-	- 0	_	-01	1.0	
Tbp.: 208 °C	4	1.0	- 0	_	1.0	-016	1.1	
	4	1.0	_	_	_	1 g NH ₄ SO ₃ NH ₂	0.5	
	4	1.0	_	_	_	1 g Acorb-Ac	202	

¹⁾ The sample was dissolved in 5 ml method before it was put into the flask

²⁾ MEKO has been dissolved in Placcel 320 (Polycaprolacton) before the analysis

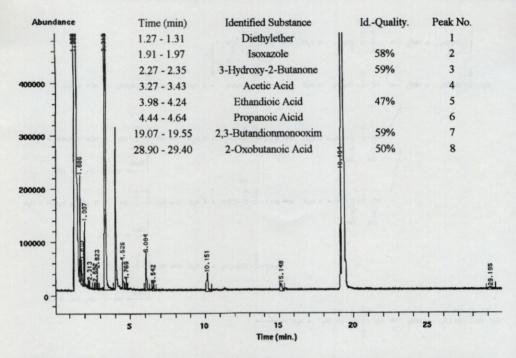
experiments). From this result it also follows, that the HCN yield depends on the interface surface area between the organic and the water phase. This explains the deviations between the HCN yields out of different IPDI-MEKO analysis runs in Table 2

IPDI-MEKO phase separates during the JIS-Analysis, which promotes the HCN generation but still does not explain a feasible reaction pathway. Since the hydrogen cyanide yield of the NH₂OH/ketone systems are quite low and improve only in mixtures a more simplified system with better yields should be the better choice.

³⁾ MEKO was placed in the flask, then H₃PO₄/H₂O was added and after 10 min waiting and dissolving MEKO in the acidic solution Placeel 320 was added

HCN Formation Based on Ketones

The generation of HCM out of organic compounds in the presence of MO_{λ} has been reported many times^{1, 2, 9}. Especially the $MaMO_{\lambda}/k$ etone system yields higher amounts of HCM, therefore it should serve as a base for a feasible reaction pathway. $MaMO_{\lambda}$ leads to the formation of HMO_{λ} at acidic conditions. HMO_{λ} is also generated by redox reactions out of most other MO_{λ} asamples except $M_{\lambda}O$. Therefore $MaMO_{\lambda}$ provides a general base for further discussions of all MO_{λ} derivatives.


Table 5 mainly indicates that the combination of ketones with NaNO₂ leads to HCM formation. To get an idea of the involved reaction mechanisms GC-MS has been performed. Figure 6 shows the total ion chromatogram (TIC) of MEK plus NaNO₂. The diethyl ether peak in Figure 6 is due to the extraction solvent, all other peaks

result from degradation products of MEK as shown in Figure 7.

Table 5 CN- generation based on ketone compounds

om 19d Jom 19d Jom 19d	(µ8/100 ml) (U8/100 ml)	Reducing or Additional Agent	(8) EDLV	(8) ^z ON ^p N	(8) 12H• HO ^z HN	(8)	ence Refer-	อุปนทร
	ς>	100 m	-	-	131	0.1	9	DWK
	5>	-	0.1	-	-	0.1	9	
	.6>	-	-	-	2.0	0.1	9	
	5>	- 0	0.1	-	2.0	0.1	9	
	097	-	-	2.0	-	0.1	9	
	1300	10 -	0.1	2.0	-	0.1	9	
	5>	-	0.1	_	-	0.1	9	MEK
	2.0>	-	-	-	1.0	0.1	7	
	2.0>	-	_	_	2.0	0.1	7	
	2.0>	_	_	-	0.1	0.1	7.	
	245	A STATE OF THE STA	d Pulpin	20.0		0.1	7	
	3720	SOUTH LEGISLE	0.04	2.0	Buch De la	0.1	7	
702 01	0715	SERVICE THE RESERVE	ONLO	2.0	ang with	0.1	9 7 7 7 7	
10.70/00	3700 2.0 >	Mary Mark Hotel	_	2.0	1.0	0.1		CAH
	č.0 >		_		2.0	0.1 0.1	7 7 7 7 7	СуН
	6.0 >				0.1	0.1	2	
	7.61			20.0	0.1	0.1	2	
	9.69			2.0		0.1	2	
00/064.0	134		_	2.0	-	0.1	2	
001	5>			-	2.0	0.1	9	DIPK
	2.9	-	0.1	_	2.0	0.1	9	
0.540/00	130	en hetzene i	- Total	2.0	-	0.1	9	
00.	0\$6	HE HITSE MICH	0.1	2.0	WOTEN.	0.1	9	
	5>		-	-	2.0	0.1	9	DLBK
	5>	-	0.1	- 11	2.0	0.1	9	
	5>	-	-	2.0	-	0.1	9	
	096	north of the sale	0.1	2.0	LOUI TOU	0.1	9	

The sample was dissolved in δ ml methanol before it was put into the flask

Figure 6 Organic phase GC-MS of neutral (pH 7) 100 ml aqueous phase / 50 ml diethyl ether extract; 20 fold concentrated by evaporation of diethyl ether to a final sample size of 2.5 ml; out of distillate from 1 g MEK; 1 g NaNO₂; 10 ml $\rm H_3PO_4$; 240 ml $\rm H_2O$; 1h reflux treatment; 2 h distillation. (The extraction was performed in order to remove $\rm NO_x$ in the distillate)

Instrument : Hewlett Packard 5989A

Column : J&B-DB-WAX (0.25 mmø *30m; 25µm PEG-20M coating)

Inj. Temp. : 250°C

Column Temp. : 120°C; 0°C/min

Ion Source Temp. : 200°C Separator Temp. : 100°C Carrier Gas : He; 1 ml/min

In the reaction pathway of ketones with NO_x the NO_x first attacks the α -carbon atom to the carbonyl carbon. The reaction leads to a dion-monooxime or trion-dioxime. These α -diketone or α -triketone derivates can cause C-C bond cleavages by hydrolysis (CyH/NaNO₂). This reaction or the H₂O elimination out of CH = N-OH yield α -keto-cyanides, which then are hydrolyzed to α -keto-carbon-acids (R-CO-COOH) by releasing of NH₃ or carbon-acids by releasing HCN.

Furthermore NO_x partly oxidizes these compounds up to decarboxylated derivatives. Some of these compounds have been identified in Figure 6. 2-Oxobutanoic - Acid (C₂H₅-CO-COOH) could be the nitrile hydrolysis product of 2-Oxobutan-1-nitrile (R-CO-CN) or the product of hydrolyzed and oxidized 2-Oxobutan-1-aldoxime (R-CO-CNOH). Propanoic Acid could result from the decarboxylation of 2-Oxobutanoic Acid or the hydrolysis of 2-Oxobutan-1-nitrile. The last reaction cleaves of HCN. Overall the GC-MS data supports the postulated reaction mechanism quite well.

Figure 7 Oxidation of ketones by HCN generation therefrom

This postulated reaction pathway should be truncated by an introduction of substituents to the carbon atoms adjacent to the carbonyl carbon atom. A complete substitution with methyl groups provides indeed a HCN free distillate (DTBK in Table 5), while one remaining hydrogen atom decreases the detected amount significantly (DIPK in Table 5).

The DTBK result in Table 5 also indicates the degradation of EDTA by NO_x^9 , while the DIPK experiment suggests a degradation of EDTA by NH_2OH .

Since the presence of an organic phase supports the formation of HCN in the presence of NH₂OH, it has to be explained why the more hydrophobic ketones, like CyH, DIPK and DTBK, do not cause any HCN detection. For DIPK and DTBK this result is understandable, since DTBK is inert and DIPK probably reacts with NH₂OH to an α -ketoamine (R₂C(NH₂)-CO-R) or with HNO to an di- α -ketoamine (NH(R₂C-CO-R)₂). Both amines cannot be transformed into cyanides, since the amine carbon atom has no further hydrogen atoms. Any traces of HNO₂ (Chapter 4) are to small for a HCN generation with DIPK.

CyH could be derivatized by NH_2OH or HNO to an α -ketoimine, which is then hydrolyzed to an α -diketone, that could react with NH_2OH to an α -ketoxime, which could lead to a C-C bond cleavage and the formation of HCN. Since there are many

step involved in this reaction pathway and since the formation of an oxime in an acidic medium is unfavorable, the yield of generated α -ketoxime seems to be to small to generate more than $5~\mu$ -g HCW/100 ml.

Hydrolysis of a-Keto-Cyanides

The key reaction for the HCM generation by No_x and ketones is the hydrolysis of α-keto-cyanides (R-CO-CM). This reaction is similar to the hydrolysis of carbon-acid chlorides (R-CO-CI), which results in the formation of HCI and a carbon acid (R-COOH). The total reaction pathway could be also regarded as somewhat analogous to the "Haloform" reaction, where α-methyl ketones split of chloroform by treatment with HOCI?

To prove this R-CO-CN hydrolysis, the JIS-Analysis of PCy has been investigated. The result in Table 6 indicates that about 95% of PCy is hydrolyzed by cleaving of HCM. The well known nitrile hydrolysation⁷ is only a minor side reaction.

Table 6 CN- detection from various intermediate and additive compounds

bləiY	CN- (µ8/100 ml) (distillate)	Reducing Additional Agent	(8) c	(8)	(8) 13H• HO [‡] HN	tnuomA	Refer-	อุปณฑร
70730	8.1	FINAL PS SE	*	r (=1400	1.0	0.1	ε	EDTA
00/042.0	2.02	a combinate	DU ATO	_	2.0	0.1	3	
70111	142	1000		1.0		0.1	3	
4.11%	380	*	4	2.0	-	0.1	3	CHEST PRINTERS
	911 6L	*	N K040 C	Am_96*	1.0	0.1	3	Ascorb-Ac
	16.42)	* 1010	DES TREES	1.0	2.0	0.1	c	
	54.42	*	_		_	0.1	3	
00/0856	375000			2.0	_	0.1	3	50
001 000	321000				2.0	0.1	9	ьсу
	335800	5		2.0	-	0.1	9	
	373000	1	0.1	2.0		0.1	9	
	ς>	-	0.1	-	7	0.1	9	NA
	۶>	-	-	-	2.0	0.1	9	1717
	ς>	_	0.1	-	2.0	0.1	9	
	12	-	-	2.0	_	0.1	9	
	017	-	0.1	2.0	-	0.1	9	
	5>	1-1-	-	-	-	0.1	9	NA Iom S
	5>	-		-4	2.0	0.1	9	Adql lom I
	5>	-	0.1	-	2.0	0.1	9	
	5>	-	-	-	-	0.1	9	NA Im S
	5>	-	0.1	-	-	0.1	9	Adql lom I
	5>	-	0.1		-	0.1	9	2 mol MEKO
	5>	-	-	-	-	0.1	9	N-Ethyl-
	71 < 2	-	-	2.0	2.0	0.1	9	acetamide

The sample was dissolved in 5 ml methanol before it was into the flask to M_{Δ}^{-1} has been detected

This α-keto-cyanide-hydrolyzation should also be the key in understanding the HCN formation out of oxime blocked isocyanates.

General Reaction Scheme for the Formation of a-Keto-Cyanides

The electrophilic addition of HMO_2 to C=C double bonds is known? It is possible to carry out the same reaction with MH_2OH or HMO. At first an eletrophilic M^+ species has to be generated by adding H^+ to HMO_2 , $HM(OH)_2$ or MH_2OH (see Figure 8).

The partially positive nitrogen atom attacks a C-H acidic compound. Possible

reaction partners are shown in Figure 9.

Species A derives from MEKO blocked isocyanates, where the oxime nitrogen will be protonated at pH 2, which will promote the double bond shift. Species B derives from MEK, C is based on N-ethyl-acetamide, D on a primary or secondary cyanide and E on EDTA. The nucleophilic carbon atoms of these C-H acidic compounds react with the electrophilic N+ atoms as shown in Figure 10.

In this way α -methylene- or with MO_{α} even α -CHR₂ – carbonyl or carbonyl analog compounds generate HCM in the JIS-Analysis. In the case of α -methylene- or α -CHR₂ – carbonyl compounds C-C bond cleavages have to take place, which should hinder the reaction and decrease the reaction yield. That this C-C bond cleavage occurs is supported by the IPDI-CyHO sample in Table 5 or the DIPK sample in Table 5. Also in the case of EDTA in Table 6 a C-N single bond has to be cleaved to allow the completion of the suggested reaction (see Figure 11).

Although AN cannot be regarded as carbonyl analog compound it causes the formation of HCM in combination with MO_x in almost the same way (see Figure 12). Since there is at least one oxidation step involved in the MH₂OH reaction pathway to the target molecule structure α-keto-cyanide, an experiment to prove this oxidation step seemed to be feasible. For this reason diaminoacetone has been investigated. The

(A)
$$HO^{-+}N = O$$
 ; $H - O - - - - + N = O$ $\xrightarrow{+H +}$ $HO - N = O$

$$H_2N - OH$$
 + H^+ + H_2 + $H_3N^+ - OH$ (C)

Figure 8 Formation of an electrophilic nitrogen atom under acidic conditions

$$R-CH_2-C\equiv N \qquad \qquad H^+ \qquad R-C\equiv C\equiv NH \qquad (D)$$

Figure 9 Formation of various nucleophilic reaction partners under acidic conditions

X: 0; R-N

Figure 10 Reaction of an electrophilic nitrogen atom with a nucleophilic partner that yields α-Ketocyanides

Figure 11 Generation of a HCN precursor molecule out of EDTA and HNO2

Figure 12 Generation of a HCN precursor molecule out of acetonitrile and HNO2

result in Table 3 clearly indicates that NH₂OH is able to oxidize an α-amino-carbonyl group, because HCN has been detected.

After all these tested samples one finds as qualitative reactivity estimation (R-aliphatic hydrocarbon):

- NH2OH causes less HCN generation than HNO2.
- -CO-CH₃ analog compounds give the best HCN yields.
- -CO-CH₂-R analog samples decrease the HCN yields by one order of magnitude.
- CO-CH-R₂ analog substances generate HCN only in combination with HNO₂ (NO_x).
- - CO-R₃ analog samples inhibit the formation of HCN.

Further Reaction Pathways for HCN Formation based on NOx

The HCN generation by the combination of NO_x and ascorbic acid (alcohols) or amines does not fit into the general reaction scheme proposed in section 9. At least the investigated amines miss the carbonyl group in their molecular structure. A second difference is that in combination with NO_x the investigated amines lead to a much smaller amount of HCN than the tested carbonyl compounds (Table 3, Table 5). For ascorbic acid this is even reversed, because NH₂OH produces more HCN than HNO₂ (Table 6). Therefore a different reaction mechanism has to be involved in the HCN generation process. We believe that this reaction mechanism is based on the Barton-Reaction¹¹. The reaction mechanism for amines (and alcohols) is shown in Figure 13.

There are different opportunities to generate HCN, but for us this looks the most probable one. At first the amine and HNO₂ forms a diazo compound, which is very

Barton - Reaction

experiments.

Figure 13 Generation of a HCM out of amines and HMO₂

reactive and gets hydrolyzed easily. The resulting alcohol is then esterificated by HNO_2 . This nitrous acid eater is light sensitive and enables an addition of a $N=O_3$ radical to the aliphatic hydrocarbon chain. This leads to an oxime or after its hydrolyzation to a ketone. From here the reaction mechainism of section 9 can be applied.

A different reaction mechanism for amines would be the oxidation of the amine group by NO_x . The result could be a cyanide, which is then derivatized according chapter 9 to an α -keto-cyanide. Furthermore one could think of an nitrous acid amide instead of an ester, which already could perform the Barton Reaction. Both alternatives seem to be rather unlikely, since the formation of a diazo compound should be the main reaction mechanism.

Ascorbic acid primarily reduces HNO_2 to NO_x or N_2O . But the reaction product of this reduction or ascorbic acid itself can be regarded as an alcohol, which reacts in the

same way as the alcohol in the above proposed mechanism.

One reason for the smaller HCN yield caused by the combination of HNO₂ and

amines or ascorbic acid should be the reduction of HNO₂ to N₂ or N₂O and hence the reduction in the available amount of HNO₂. Much more limiting should be the availability of photons, which are necessary to start the Barton Reaction. Since the brightness differs often between each analytical run or different laboratories, one brightness differs often between each analytical run or different laboratories, one should also expect a broad range in the amount of detected HCN in different

CONCLUSION

The term NO, in the following statements excludes N2O.

Due to the discussed reaction mechanisms, it is very likely that aliphatic organic compounds that contain amine hydroxy groups cause the formation of HCN in the total cyanide analysis method in combination with NO₂.

Aliphatic hydrocarbons with carbonyl – or carbonyl analog groups, like ketones, oximes, esters or amides, tend also to generate HCN under total cyanide analysis conditions, if the sample also contains NO_x or NH_2OH . NO_x has a much higher reactivity and therefore greater potential than NH_2OH to lead to false HCN detection under the analytical conditions.

Peptides or carbohydrates as common ingredients in solutions like waste water can therefore cause a HCN misdetection in case NO_x or NH₂OH are also part of this solution.

In case of a phase separated system with a water and an organic phase, the formation of HCN in presence of NH₂OH is promoted during the total cyanide analysis, which results in a interphase suface area dependence of the final reaction yield.

A suggestion to avoid the HCN misdetection by a sample pretreatment of oxime blocked isocyanates with caustic soda has been made.

Since the JIS-Analysis method is very similar to other used distillation methods to detect HCN in water, like ISO or ASTM methods, it is very likely that other methods also cause a detection of HCN, which has probably not been in the sample before the analysis started.

Acknowledgements

The author likes to thank Mr. H. Iwasaki of Daicel Chemical, who performed the GC-MS analysis, MR. M. Nakamoto of Daicel Hüls, who did most of the prescreening labwork, Dr. R. Lomölder and Dr. H. Däbel of Hüls AG, who served as a discussion partners for the proposed organic reaction mechanisms, and Dr. M. Nonomura, who supplied most of the cyanide analytical data and discussed all of my ideas about reaction mechanisms with me, regardless of how mistaken they might have been.

References

 M. Nonomura; "Endogenous formation of hydrogen cyanide during distillation for the determination of total cyanide", *Toxicol. Environ. Chemistry* 17, 47–57 (1988).

 M. Nonomura, M. Suzuki, T. Hobo, K. Dejima and H. Hotta; "Cyanide formation in oxime blocked isocyanates of cationic electrodeposited paints", *Toxicol. Environ. Chemistry* 39, 65–70 (1993).

 M. Nonomura; "Pretreatments for the determination of total cyanide – interferences, effects of reducing agents and additives"; *Intern. J. Environ. Anal Chem.*, 35, 253–261 (1989).

M. Nonomura; "Contribution to the 42. Thermosetting Plastics Symposium", 10.28 in Osaka (1992).
 H. Modler and M. Nakamoto; Investigations at the Technical Service Center of Daicel Hüls in Ohtake

 Detection Method based on "Kyoritsu Chemical Check Lab. Corp.; Water Analysis Kit; 0, 02–2 mg
 HCN/1"

6. Asahi Techno Research - Ohtake Shi 73906 - Hiroshima Ken - Japan - Analytic Lab Results.

- "Organikum"; VEB Deutscher Verlag der Wissenschaften Berlin 1981–15. Auflage.
 Holleman Wiberg, "Lehrbuch der Anorganischen Chemie", Walter de Gryter Berlin, 91–100, Auflage, 589, (1985).
- E. Nakamura, K. Osawa and H. Namiki, "Abnormal HCN Formation by Distillation During Total Cyanide Determination in Water"; JACS 42nd. Annual Meeting Hiroshima (1993).
 G. March, "Advanced Organic Chemistry", Wiley Interscience N. Y. 3rd. Edition, 987–983.

11. Bayer - Walter, "Lehrbuch der Organischen Chemie", S. Hirtzel Verlag - Stuttgart 1991, 22. Auflage, (1991).